Steel Forging | Hot Forming | Cold Forming

We do
  1. Open Die, Hammer or Smith Forging
  2. Drop forging.(closed die)
  3. Press forging
  4. Upset forging
  5. Roll forging
  6. Swaging
Work With
  • All Steel Types including Carbon, Alloy and Stainless
  • Aluminum Silicon Bronze
  • Bronze
Worked for
  • Components for the Oil Related Industry
  • Automotive Industry
  • Transportation Industry
  • Ship Building Industry
  • Heavy Plant Engineering Industry
  • Vehicle Springs
  • Steel Works Equipment

Click image to enlarge
Worked On
  • Anti-Roll Bars
  • Automotive Leaf Springs
  • Box Tongs upto 12 inches
  • Bracket Work
  • Davit Arms
  • Engineering Parts and Repairs
  • Engineering Requirements - Bolts (Off Standard)
  • Forge Test Pieces
  • Heat Exchanger Fabrication
  • Jominy Test Pieces
  • Main Leafs for Locomotives
  • Open Die Forging
  • Prototypes and Small Production Runs
  • Shackles up to 40Kg
  • Special Hooks
  • Sporting Gun Parts (barrels - chop a lump)
  • Torsion Bars
  • more ...

Hammer Forging

Our long list of clients include:
  • British Waterways
  • Bridon International
  • C F Booth Engineering Ltd
  • Europa Engineering
  • Firth Rixson Super Alloys
  • MAN Diesel Ltd
  • MBH Analytical Ltd
  • MSI Quality Forgings
  • National Railway Museum
  • National Railways
  • OutoKumpu Stainless Ltd
  • Rotherham Metropolitan Borough Council
  • Sheffield Hallam University
  • Tata Steels
  • Tinsley Bridge Ltd
  • Wavin Pipeline Services
  • William Cook
  • many more ...
The most common type of forging equipment is the hammer and anvil. Principles behind the hammer and anvil are still used today in drop-hammer equipment. The principle behind the machine is simple: raise the hammer and drop it or propel it into the workpiece, which rests on the anvil. The main variations between drop-hammers are in the way the hammer is powered; the most common being air and steam hammers. Drop-hammers usually operate in a vertical position. The main reason for this is excess energy (energy that isn't used to deform the workpiece) that isn't released as heat or sound needs to be transmitted to the foundation. Moreover, a large machine base is needed to absorb the impacts.

To overcome some shortcomings of the drop-hammer, the counterblow machine or impactor is used. In a counterblow machine both the hammer and anvil move and the workpiece is held between them. Here excess energy becomes recoil. This allows the machine to work horizontally and have a smaller base. Other advantages include less noise, heat and vibration. It also produces a distinctly different flow pattern. Both of these machines can be used for open-die or closed-die forging.

A forging press, often just called a press, is used for press forging. There are two main types: mechanical and hydraulic presses. Mechanical presses function by using cams, cranks and/or toggles to produce a preset (a predetermined force at a certain location in the stroke) and reproducible stroke. Due to the nature of this type of system, different forces are available at different stroke positions. Mechanical presses are faster than their hydraulic counterparts (up to 50 strokes per minute). Their capacities range from 3 to 160 MN (300 to 18,000 short tons-force). Hydraulic presses use fluid pressure and a piston to generate force. The advantages of a hydraulic press over a mechanical press are its flexibility and greater capacity. The disadvantages include a slower, larger, and costlier machine to operate.